Localized Artificial Viscosity Stabilization of Discontinuous Galerkin Methods for Nonhydrostatic Mesoscale Atmospheric Modeling

نویسندگان

  • M. L. YU
  • F. X. GIRALDO
  • M. PENG
  • Z. J. WANG
چکیده

Gibbs oscillation can show up near flow regions with strong temperature gradients in the numerical simulation of nonhydrostatic mesoscale atmospheric flows when using the high-order discontinuousGalerkin (DG) method. The authors propose to incorporate flow-feature-based localized Laplacian artificial viscosity in the DG framework to suppress the spurious oscillation in the vicinity of sharp thermal fronts but not to contaminate the smooth flow features elsewhere. The parameters in the localized Laplacian artificial viscosity are modeled based on both physical criteria and numerical features of the DG discretization. The resulting numerical formulation is first validated on several shock-involved test cases, including a shock discontinuity problem with the one-dimensional Burger’s equation, shock–entropy wave interaction, and shock–vortex interaction. Then the efficacy of the developed numerical formulation on stabilizing thermal fronts in nonhydrostatic mesoscale atmospheric modeling is demonstrated by two benchmark test cases: the rising thermal bubble problem and the density current problem. The results indicate that the proposed flow-feature-based localized Laplacian artificial viscositymethod can sharply detect the nonsmooth flow features, and stabilize the DG discretization nearby. Furthermore, the numerical stabilization method works robustly for a wide range of grid sizes and polynomial orders without parameter tuning in the localized Laplacian artificial viscosity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling

A Discontinuous Galerkin (DG) finite element formulation is proposed for the solution of the compressible Navier–Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic atmospheric modeling. The resulting scheme naturally ensures conservation of mass, momentum and energy. A semi-implicit time integration approach is adopted to improve the efficiency...

متن کامل

A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases

We present spectral element (SE) and discontinuous Galerkin (DG) solutions of the Euler and compressible Navier– Stokes (NS) equations for stratified fluid flow which are of importance in nonhydrostatic mesoscale atmospheric modeling. We study three different forms of the governing equations using seven test cases. Three test cases involve flow over mountains which require the implementation of...

متن کامل

Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode

This paper describes a unified, element based Galerkin (EBG) framework for a three-dimensional, nonhydrostatic model for the atmosphere. In general, EBG methods possess high-order accuracy, geometrical flexibility, excellent dispersion properties and good scalability. Our nonhydrostatic model, based on the compressible Euler equations, is appropriate for both limited-area and global atmospheric...

متن کامل

Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations

We perform a comparison of mass conservation properties of the continuous (CG) and discontinuous (DG) Galerkin methods on non-conforming, dynamically adaptive meshes for two atmospheric test cases. The two methods are implemented in a unified way which allows for a direct comparison of the non-conforming edge treatment. We outline the implementation details of the non-conforming direct stiffnes...

متن کامل

Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES

The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014